DETERMINING THE THERMAL STRESSES IN A HOLLOW
VISCOELASTIC SPHERE

A. F. Sidorov and O. B. Khairullina UDC 539.32

For a viscoelastic sphere with spherical cavity, solution of the quasistatic problem of the
stresses produced by a nonstationary temperature field reduces to solution of an integral
—differential equation whose right side depends on an unknown function of the time. A
numerical solution method is described.

We are to compute the stresses and strains in a viscoelastic sphere of radius R with a spherical cav-
ity of radius r, with specified stresses on the boundaries of the region, and specified stresses at the initial
time tg:

6, lmry = 0, (ry D), 0, i =0, (R, 1), G, lis, = 0, (r. 1o) ™

for a linear law of viscoelasticity [2]:
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The coefficients qy(T), q(T), pe(T), p;(T) depend arbitrarily on the temperature T.

For spherical symmetry, the complete system of equations for the linear quasistatic viscoelastic
problem [1, 2] congists of the equilibrium equation

B 2 (6,400 =0, (®)
or r
the consistency condition
Oeq
g = [ Eqy
4 or + ™
the heat~conduction equation
oT 2 0T 10T (8)

ar? roor a ot
and the law of viscoelasticity (2), (3) (all equations are represented in dimensionless variables),

The initial and boundary conditions are given only for ¢, so that we reduce the system (2), (6) to an
integral —differential equation containing the second mixed derivative with respect to o,.. Using (3), (7), we
eliminate 0y from (6). We divide the resulting equation by K = E/(1 —2p), and integrate from r; to r; then
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Substituting £g into (2), we obtain the following equation for op:
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The arbitrary time function s(p(ro, t) = f(t) and its derivative 8s(p(r0, t)/ot = £'(t) oceur in C,, Cs.

To solve this problem, we solve {10) so as to satigfy the initial condition (1). After we have found
oy, We can determine the remaining stress and strain components from (6), (7), (9).

The lines r = const, t = const are characteristics of (10).

In contrast to the ordinary Gursat problem, where the initial data are known for two characteristics,
in our case the initial conditions are specified on three characteristics, t =ty, r = r,, r = R, but the func-
tion f(t) occurring in the coefficient of (10) is arbitrary. It must be so defined that all three conditions on
the characteristics are satisfied.

The system (10), (8) with given conditions (1), (4), (5) cannot be solved analytically whenT = const,
When numerical methods are employed, it is essential to establish the correctness of the given problem.
This is not difficult to do for a model equation with constant coefficients,

o g0 O,
orot dar r*

which is obtained from (10) when T = const. It is easy to obtain an exact solution for this equation; its
form shows the correctness of the problem as formulated.

Let us now describe a numerical method for solving (10), which is based on the method of charac-
teristics [3].

We construct a rectangular net, formed by the characteristics r =ry+ih, t =t;+jr (1 =0,1,...,n;
j=0,1,...,m)of (10). The equations of the characteristics and the differential relationships along them
are as follows:

Family I Family 11
dr = 0, dt = O,
(1D
dt — AdU =0, dr — AdV =0,
do, = Vdt, do, = Udr,

while (8) is replaced by approximating difference eguations with order of approximation Ot + 7). The dif-
ference equation for heat conduction is solved by the "dispersion® method [4], i.e., we can assume that the
temperature is specified within the region.
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The final computational formulas for (10) are

Upj=4;0+ Uiy (12)
Vii=Aigih +Vign (13)
1
Oui= o (0054 4 G, + Ui s+ Vi 541), (14)
where
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If for the j-th series we know oy i Ui i ], then V1 ,j can be found from (13), with the solution being
refined in accordance with the followmg formula [3}:

Vii= *;L— Ay + Ay + Vi (16)

as soon as we determine the value of fj,((t) that occurs in Ay ;.

Letting f; = = 0, we find V; from (13}, (16) with a certain error M; JfJJrl If we trace the increase in
the error from point to point, we can obtain an expression for M;j .

h
Mi,j:ll’+_2‘(ai-1,j+ai,j)+’§" i-1,i4 l]J My ;

i—1 L2

h h
+ hey, s 2 dy My 5+ ) (I+ ha; j)b; 5+ 5 b, + heiy 3 (14 ha; ) E dy, iMy 1 (17
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a . = 315,18 K - 341.i.jr(3)Ki,J'
v 2r; K’ i@is+ P, 1) r? (‘hi,]‘ + Ki.jpli,j) T
b= 2:0 ¢ 5 5= i hAle yizl

[8)
(when i =1, 2, the corresponding sums in (17) drop out),

As a result of determining V; i,j» we obtain a certain vaiue Vy J at the point (R, tJ) On the other hand,
from (1) we can find the exact value of V(R, J), after which

V(R 1) —
f1+1 Mn,] N (18)
Knowing the proper value of fj+1’ we recompute Vi,j and proceed to compute oy(r, t) and U(r, tj for the
(j + 1)-st series. No additional iterations are required to determine Vi,j'
We compute Ui’jﬂ from (12) and then use the formula
i
Uin = A+ AT+ Uss (19)

to refine the solution. The unknown value V; ,j+1 oceurs in A; e however. Thus the function U(r, t) is re~
fined by 1teratnon We first let Vi ;44 =Vj j and compute IOJI ,j+1 for the entire series. We next find Vj jH
and compute U1 o etc. The iteration process terminates when

o987



. A LN

/\ N

a b \
0 8 6 : J 9 3 r

Fig. 1. Stresses o, as function of time ¢ and of radius r (a, b, re-
spectively): a) 1) r =7; 2)10; 3) 13; b) 1)t =4; 2)9; 3)16; 4)21.

! I—1
Ui in— Ui i1 [ <8, (20)

where I is the number of the iteration, and & is the specified error.

We compute o; 3,4 at the same time as Uj ;4. . The series is first evaluated by means of (14), and in
subsequent calculations the series 3 j+ is refined from the following formula [5]:

: not ! T !
0141 =04, F Opy jua + o Uig,jaat Uiy + o Wi+ Vi) (21

Writing (8), (9), (7) in terms of differences, we can obtain formulas for Oy, €¢, Er-

The method was tested in the class of sufficiently smooth solutions for point solutions obtained when
T = const and &4 = oy.

Evaluation of different versions indicated the stability of the proposed computational scheme. It also
turned out that one iteration was usually sufficient to satisfy (20).

As an example, we calculated the stresses in a hollow sphere (r, = 5, R = 15) of epoxy resin {6], for
which
1 = 10443-exp (— 0.0275T), a = 8-1075,
E =—1.75T + 352.5, p = 0.4,
1 E
= —, == 1, =0’ = ——,
Po = » 41 % 4 +p
The calculations were carried out under the following conditions:
1
: 45 — — (t—6)%, 0 <t << 14,
T)i=g=36 Tl=s~= 4 ( )
30 , Lol

Ty = 72— % (t— 121, 2], 5 =0;

=0

0, |t=0 =0, lr=s = O)r=15 = 0.

The solution results are shown graphically in Fig. 1.

The method proposed can be employed effectively to design structures of the hollow~-sphere type made
from viscoelastic materials with arbitrary temperature characteristics and an arbitrarily varying tempera-
ture field.

NOTATION

0y. Oy are the normal stresses at areas with normals r, ¢;
s is the average normal stress;
Ers &y are the radial and circumferential strains;
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e is the average elongation;

r is the radius of the sphere;

£ is the time;

T(r, t) is the temperature;

qo(TY, a4(T), po(T), p(T) are the parameters of viscoelasticity;

ig the coefficient of thermal expansion;

is the Poisson ratio;

is the Young's modulus;

is the bulk modulus;

is the viscosity;

T are the radius and time steps;

1 Ui Vige T A0 %t

dii,js Poi,j» P1i,j» @i,j» Ki,j are the values of the corresponding functions at the point rj = ry + ih,
tj =ty + 7.
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